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In this paper, a control function approach is developed to deal with endogeneity issue in
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by a two-step procedure, requiring only standard regression to be implemented in each

step. To demonstrate the usefulness of our method, we investigate income gradient in

child health based on U.S. data from the Panel Study of Income Dynamics. We find

empirical evidence that income gradient rises during early childhood, followed by a de-

cline after age 12. Ignoring endogeneity of family income and unobserved individual

heterogeneity would underestimate the true gradient considerably.
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1 Introduction

Endogeneity might arise for a variety of reasons in studying the causal relationship between

two or more economic variables. It results in inconsistency of standard estimators that are

justified in the absence of endogeneity and reverse causality. Fortunately, econometricians

have proposed a wide range of solutions to the problem of endogeneity. If the same individ-

uals are observed repeatedly over time, we can overcome the potential endogeneity problem

created by the omission of individual heterogeneity. For instance, in linear panel data models,

one can rely on a number of data transformations, e.g. within or first-difference, to get rid

of the time-invariant unobserved effects and estimate the structural parameters by ordinary

least squares. When endogeneity is caused by the correlation between included regressors

and time-varying omitted variables, eliminating the individual heterogeneity alone would not

work. In these circumstances, we need additional information to identify the parameters of in-

terest. Among them, the exclusion restriction may be the most commonly used if we are able

to find a set of valid instruments that are highly correlated with endogenous regressors but

have no direct influence on the dependent variable. This is equivalent to expanding the system

with more equations. The structural equation represents the functional relationship between

the dependent variable and exogenous or endogenous regressors, whereas the reduced form

equations write endogenous regressors as functions of all exogenous variables, including

instruments. Recently, Klein and Vella (2010) and Lewbel (2012) exploited heteroscedas-

ticity of the error terms for identification without the exclusion restriction. However, their

approaches cannot be used when the dependent variable is discrete or of substantially lim-

ited range. Furthermore, they only considered cross-sectional design without controlling for

individual heterogeneity.

In this paper, we estimate a parametric ordered response model based on panel data. Many

economic variables are observed discrete with a natural order. Examples include educational

attainment (“high school dropout”,“complete high school but not college”, and “complete

college or a higher degree”), preference towards a commodity (“strongly dislike”, “neutral”,

and “strongly like”), subjective rating of health (”excellent, ”very good”, ”good”, ”fair”,
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and ”poor”), and the like. The typical estimation method in these contexts is maximum

likelihood if cross-sectional data is available; see Maddala (1983) for a textbook treatment.

This approach can be easily extended to panel data models where individual heterogeneity

is present. Random effects model is used when individual heterogeneity is independent of

all regressors, and estimation follows by integrating the unobserved effects out of the likeli-

hood, provided its marginal distribution is specified correctly. Wooldridge (2010) provided

more details on this model. However, independence assumption is too strong to be useful

in many cases. In models with correlated individual effects, the fixed effects model is often

used that allows for a general form of dependence. To this end, Das and van Soest (1999)

decomposed the ordered response model into a series of models with binary outcomes, each

of which is estimated by conditional maximum likelihood, as suggested by Anderson (1970)

and Chamberlain (1980). These conditional logit estimators can be combined to yield the

final estimator by using minimum distance. As in the binary panel data models with fixed

effects, it is generally hard to find a sufficient statistic to be conditioned on for the probit

case; see Greene and Hensher (2010). Another shortcoming of fixed effects specification is

that only the parameter associated with an explanatory variable can be identified, and thus, it

precludes computation of marginal effect, which is more informative in nonlinear regression

models. In this paper, we consider the so-called “correlated random effects” model. The

distinguishing feature of this approach is that it explicitly models the dependence between

heterogeneity and regressors. Within this framework, estimation and inference can be under-

taken in a straightforward manner. See Cameron and Trivedi (2005) for applications of this

specification in other nonlinear panel data models.

When the included regressors are correlated with time-variant omitted variables, con-

trolling for individual heterogeneity alone cannot eliminate endogeneity completely. Papke

and Wooldridge (2008) described a control function approach by finding a set of valid in-

struments. The control function works since it captures the correlation between endogenous

variables and unobservable error term. Holding the variation generated by the control func-

tion constant, the remaining part of the error term becomes uncorrelated with all regressors,

and the structural parameters can be estimated consistently by a standard procedure. This is

quite similar, in spirit, to the Heckman’s two-step estimator of a sample selection model. It
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is well known that the OLS estimator of the structural equation using the observed sample

is inconsistent. Heckman (1979) augmented this equation with the inverse Mills ratio which

serves as a control function. Once the ratio is controlled for, all regressors in the structural

equation become exogenous and thus OLS estimator restores its consistency.

The strength of the control function approach is threefold. First, it does not impose a

stringent distributional assumption on the entire system compared with the joint maximum

likelihood alternative. In particular, the distribution of the reduced form error is not restricted.

Second, the functional form of the system can be made rather flexible. The endogenous

regresssors may appear in the structural equation in various nonlinear ways. For example,

they may interact with the exogenous regressors. In this setting, the traditional two stage least

squares with endogenous regressors replaced by their first stage fitted values might fail, see

Wooldridge (2010) for further discussion. Finally, this approach suggests a simple strategy

to test the endogeneity of the regressors, as will become clear shortly. Moreover, the average

marginal effect, which is more meaningful than coefficients in nonlinear econometric models,

is much easier to estimate with control function.

In general, this methodology can be applicable to virtually all nonlinear panel data mod-

els. For example, Papke and Wooldridge (2008) considered this approach in fractional re-

sponse panel data models, where the bounded nature of the dependent variable is recognized.

Giles and Murtazashvili (2013) employed this approach to estimate a dynamic binary re-

sponse panel data model with contemporaneous endogenous regressors. The current paper

uses the control function approach to estimate ordered response panel data models.

To demonstrate the usefulness of this methodology, we revisit the relationship between

family income and child health, known as income gradient in the health literature. The ap-

proach is implemented using the Child Development Supplement of the Panel Study of In-

come Dynamics, which is a panel data of moderate size. In this setting, one may have two

sources of endogeneity. First, some unobserved family characteristics, like housing condi-

tions and safety of neighborhoods, might affect both child health and included explanatory

variables. Most existing studies using panel data simply pool all observations together with-

out taking care of the unobserved individual heterogeneity. We contribute to the literature by

correcting for this type of endogeneity within the correlated random effects framework. Sec-
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ond, regressors may also be correlated with some time-varying determinants of child health.

For brevity, we consider the case where family income is the only endogenous regressor with

respect to child health. Our empirical results reveal an increasing trend for income gradient at

early childhood if both types of endogeneity are accounted for. Ignoring endogeneity would

underestimate income gradient dramatically for all age groups.

The remaining paper is organized as follows. In Section 2, we outline the basic model

structure and derive the two-step control function estimator. This approach is applied to study

the income gradient in child health using the Child Development Supplement data in Section

3. Section 4 concludes this paper with further remarks and discussions for future research. All

mathematical proofs on the asymptotic properties of the proposed procedure are contained in

the appendix.

2 Model Structure and Estimation Strategy

We denote a generic cross-sectional unit by i, and a particular time period by t. In this section,

the number of periods Ti for individual i is fixed, and asymptotic analysis is conducted by

letting the number of units grow without bound. To save notation, only balanced scenario is

considered, i.e. Ti = T for each i.

Suppose there exists a latent variable Y ∗it , which is related to the covariates in the following

way:

Y ∗it = X1itβ1 +Y2itβ2 + ci + εit , (1)

where X1it is 1×K, Y2it is a scalar, and (β′1,β2)
′ are unknown parameters. The presence

of ci in (1) enables us to control for unobserved individual heterogeneity, which is possibly

correlated with other covariates in (1). Here, εit varies across i as well as across t, and it may

or may not be serially correlated. Y2it is likely to be correlated with both ci and εit , and thus

could be endogenous even when ci is conditioned on. We are merely concerned with single

endogenous regressor, but extension to multiple endogenous regressors is rather straightfor-
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ward so long as more valid instrumental variables are available. The observed response Yit = j

if η j−1 < Y ∗it ≤ η j for j = 1, ...,J, where η’s are thresholds satisfying η0 ≡−∞, ηJ ≡ ∞, and

η j−1 < η j. We summarize all unknown thresholds in a vector η≡ (η1, ...,ηJ−1)
′.

In order for the control function method to work, we rely on the following exclusion

restriction. Specifically, let Zit ≡ (X1it ,X2it) be a 1×M vector, where X2it is 1× L (L ≥

1) and M = K + L. To model the dependence between ci and other regressors within the

correlated random effects framework, we follow the approach taken by Chamberlain (1980)

and Mundlak (1978), and express ci as

ci = Z̄iθ+ui, (2)

where Z̄i is the time average of Zit . After replacing ci in (1) with (2), we get

Y ∗it = X1itβ1 +Y2itβ2 + Z̄iθ+ rit , (3)

and rit ≡ ui+εit . When all regressors in (3) are independent of rit , (β′1,β2,θ
′,η′)′ can be esti-

mated by maximum likelihood if we are willing to assume rit follows a specific distribution.

However, endogeneity of Y2it invalidates this procedure.

To identify the structural parameters of interest in the presence of endogenous Y2it , we

write the reduced form equation, relating Y2it to the set of exogenous variables in all time

periods Zi ≡ {Zi1, ...,ZiT}, as

Y2it = Zitγ+ Z̄iλ+ vit . (4)

Again, we have used Chamberlain’s approach to derive (4). Endogeneity of Y2it in (3) comes

from the correlation between rit and vit . Formally, the condition

D(rit |Y2it ,Zi) = D(rit |vit)∼ N(vitρ,σ
2
r ) (5)

is imposed, where D(rit |Y2it ,Zi) is the conditional distribution of rit given Y2it and Zi, ρ ≡

Cov(rit ,vit)/Var(vit), and σ2
r ≡ Var(rit)−Var(vit)ρ

2. Therefore, the structural error rit is
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correlated with Y2it only through its dependence on vit . Homoscedasticity assumption in

(5), i.e. the conditional variance of rit given vit is constant, is purely to ease the exposition.

Extension to heteroskedacity of known form is performed straightforwardly.

An important implication of (5) is that Zi may not be exogenous in (3), i.e., a subset of Zi

could be correlated with rit , although the correlation vanishes when vit is controlled for. In

addition, (5) rules out the possibility that Y2it is discrete or of substantially limited range.1 To

see why this is the case, note that joint independence between (rit ,vit) and Zi clearly implies

the first equality in (5). When Y2it is discrete, the possible values vit could take are determined

by the value of Zi. This means that vit and Zi must be dependent. Actually, this is a drawback

associated with nearly all control function applications, including those that are flexible in

functional forms. See Blundell and Powell (2003, 2004), Papke and Wooldridge (2008), and

Rothe (2009) for more details. Nevertheless, the current framework allows for the categorical

instruments in Zi.

Chesher and Smolinski (2012) examined the identification issue of ordered probit regres-

sion with potentially endogenous covariates that are discrete, leaving the mechanism that

generates those covariates unspecified, and they concluded that the model of this type is set,

not point, identified. When Y2it is not continuous, the conventional method to (point) identify

and estimate the structural parameters is to impose a stringent distributional assumption on Yit

and Y2it given Zi. All parameters involved are estimated by maximum likelihood accordingly.

The frequentist version of this procedure was adopted by Rivers and Vuong (1988), while

Munkin and Trivedi (2008) proposed a Bayesian solution to this problem. In spite of its esti-

mation efficiency in large samples, likelihood-based methods are computationally intensive.

Kawakatsu and Largey (2009) developed an EM algorithm to facilitate computation of these

models. Besides, likelihood-based methods are not robust to even a slight deviation from

the hypothesized distribution. Recently, Lewbel and Dong (2015) devised a simple estimator

in a binary response model allowing for a discrete endogenous regressor. This methodol-

ogy is computationally feasible and thus empirically attractive. However, it does require the

existence of a so-called “very special” regressor with a large support constraint, and is not

designed for ordered response models with multiple categories.

1In the same vein, endogenous binary treatment effects are not identified as well.
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After controlling for vit , Y2it is no longer endogenous. Alternatively, (5) can be written as

rit = vitρ+ζit , (6)

where ζit ∼ N(0,σ2
r ). Putting (6) in place of rit in (3), we obtain

Y ∗it = X1itβ1 +Y2itβ2 + Z̄iθ+ vitρ+ζit . (7)

A point worth noting here is that nonlinear functions of the endogenous covariate Y2it , such

as Y 2
2it and the interaction terms between Y 2

2it and X1it , are permitted in (7). It follows from

(5) and (6) that ζit , by construction, is independent of vit and Zi. Because vit and Y2it are one-

to-one functions of each other given Zi by (4), ζit is also independent of X1i ≡ (X1i1, ...,X1iT ),

Y2it , as well as any nonlinear function of (Y2it ,X1i). This is in sharp constrast with the tradi-

tional two-stage least square procedure (TSLS), where both Y2it and its nonlinear functions

have to be instrumented properly. In the control function approach, the additional nonlinear

functions of endogenous covariates do not need extra treatment since we have imposed a more

stringent independence assumption between ζit and (vit ,Zi). As pointed out by Wooldridge

(2010), there exists cases where the control function estimator is inconsistent while the TSLS

estimator is. On the other hand, the control function estimator is generally more efficient than

the TSLS counterpart provided the independence assumption is true.

Now, (7) takes the form of a conventional ordered probit model and can be estimated

routinely. Specifically, the log-likelihood function li(α) for unit i is defined as

T

∑
t=1

J

∑
j=1

I(Yit = j)log(Φ(
η j−X1itβ1−Y2itβ2− Z̄iθ− vitρ

σr
)

−Φ(
η j−1−X1itβ1−Y2itβ2− Z̄iθ− vitρ

σr
)), (8)

where α is the vector containing all parameters appearing in (8), and Φ(·) is the standard

normal distribution function.
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To motivate (8), we observe that

P(Yit = j|Zi,Y2it) = P(η j−1 < Y ∗it ≤ η j|Zi,Y2it)

= P(η j−1−X1itβ1−Y2itβ2− Z̄iθ− vitρ < ζit ≤ η j−X1itβ1−Y2itβ2− Z̄iθ− vitρ|Zi,Y2it).

Equation (8) results from the independence between ζit and (Zi,Y2it). However, this is not

the conditional probability P(Yit = j|Zi,Y2i) where Y2i ≡ (Y2i1, ...,Y2iT )
′ if Y2is (s 6= t) affects

ζit . Moreover, P(Yit = j,Yis = q|Zi,Y2i) may not be equal to P(Yit = j|Zi,Y2i)P(Yis = q|Zi,Y2i)

unless {ζit : t = 1, ...,T} are serially independent, which is questionable because they may

include a common component inherent in (rit ,vit). As a consequence, (8) is not the fully

specified log-likelihood of observed ordered responses for unit i. Instead, it is partially cor-

rectly specified. Despite the fact that (8) is not completely correct, maximizing it still yields

an estimator with desired asymptotic properties, as confirmed in the appendix. Wooldridge

(2010) called lN(α) ≡ ∑
N
i=1 li(α) as partial log-likelihood in a panel data context. For the

sake of identification, α needs to be restricted. For example, σr can be set to 1, i.e, ζit follows

the standard normal distribution, since (β′1,β2,θ
′,ρ,η′)′ are identified up to a scale factor.2

The full set of identification conditions, besides the normalization σr = 1, is given in the

appendix.

The partial maximum likelihood estimator α̂ maximizes lN(α) over the allowed param-

eter space. This is nothing but the usual ordered probit regression after adding Z̄i and vit as

additional regressors and then pooling all NT observations together. To make this procedure

operational, the unknown error vit in (8) must be estimated first. This is done by estimating

(4) using pooled OLS or feasible GLS to get the residual v̂it . Under relatively weak condi-

tions, maximizing lN(α) with vit replaced by v̂it would lead to a
√

N-consistent estimator α̂

for all identified parameters. Given that both steps are easily performed in most of the stan-

dard statistical packages, this procedure is computationally appealing. However, the default

asymptotic variance of α̂ cannot be used since the first stage estimation uncertainty of v̂it must

be addressed adequately. We adopt the approach of Newey and McFadden (1994), which fits

2An alternative identification strategy is setting Var(rit) = 1, under which σr =
√

1−Var(vit)ρ2. Since
Var(vit) can be identified in (4) and the scaled parameters, say, ρ/σr, are also identified in (8), the structural
parameters of original interest can be identified as well. We refer to Giles and Murtazashvili (2013) and Papke
and Wooldridge (2008) to appreciate how it works.
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a two-step estimation problem of this type into the framework of generalized method of mo-

ments. Consistency and asymptotic normality are established by verifying a set of regularity

conditions laid by them, as detailed in the appendix.

In a nonlinear econometric model, the estimates of unknown parameters are often less in-

formative than the true marginal effect. Suppose the objective of the current study is to mea-

sure the effect of Y2it on the probability of the lowest possible outcome Yit = 1. Instead of fo-

cusing on the parameter β2, we are more interested in the partial derivative of the conditional

probability of Yit = 1 with respect to Y2it . The question is what should be conditioned on if Y2it

is endogenous. The choice of variables in the conditioning set is essentially determined by the

aim of the study. If Y2it is exogenous given ci in (1), P(Yit = 1|X1it ,Y2it ,ci) may be of particular

interest. Otherwise, P(Yit = 1|X1it ,Y2it ,ci) does not tell anything meaningful and thereby are

not structurally important. Based on an omitted variable formulation, Papke and Wooldridge

(2008) suggested computing P(Yit = 1|Zi,Y2it), which is Φ(η1−X1itβ1−Y2itβ2− Z̄iθ− vitρ)

by (8). Suppose we are mainly concerned with the effect of Y2it when X1it takes a specific

value, say, X1it = xo
1. The average partial effect, which is widely accepted to quantify the

impact of Y2it in practice, can be obtained as

−β2

T
E(

T

∑
t=1

φ(η1− xo
1β1−Y2itβ2− Z̄iθ− vitρ)), (9)

where the expectation is taken over the distribution of (Y2it , Z̄i,vit) across i. Under quite

general conditions, (9) can be consistently estimated by

− β̂2

NT

N

∑
i=1

T

∑
t=1

φ(η̂1− xo
1β̂1−Y2it β̂2− Z̄iθ̂− vit ρ̂), (10)

where the notationˆmeans parameter estimate, and φ(·) is the standard normal density func-

tion. It is difficult, if not infeasible, to derive the asymptotic variance of (10). Instead, panel

data bootstrap is used in our empirical illustration, as recommended by Papke and Wooldridge

(2008).
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3 Empirical Application: Income Gradient in Child Health

Understanding the relationship between family income and child health, and the pathways

through which the former affects the latter enables the policy makers to reduce, if not elim-

inate, the income-related health disparity in a cost effective manner. The benefit of doing

so could be substantial due to the far reaching implications of child health on the socioe-

conomic status and well-being when children get into their adulthood. Moreover, a part of

the intergenerational transmission of socioeconomic status may be attributed to the impact

of family income on child health. The positive association between family income and child

health has been well documented in the health economics literature, see Case et al. (2002),

Chen et al. (2017), Condliffe and Link (2008), Currie et al. (2003), Currie et al. (2007),

Fernald et al. (2012), Khanam et al. (2009) and Swaminathan et al. (2019), just to mention

a few. Fletcher and Wolfe (2014) provided a comprehensive overview of this topic. Children

in the rich family are generally more healthy than their poor counterparts, often known as the

income gradient in child health. This relationship is fairly robust to the choice of the estima-

tion sample. When it comes to the magnitude and other nuances of the gradient, empirical

evidence has not been unambiguous. The pioneering work by Case et al. (2002) using U.S.

data found that the gradient becomes stronger as children age, and analyzed the sources of

the steepening gradient in terms of incidence and accumulation of health shocks. However,

some recent studies using data from Germany (Reinhold and Jürges (2012)), and Australia

(Khanam et al. (2009)) appear to contradict the steepening gradient hypothesis when more

explanatory variables are considered.

A potential limitation of the aforementioned studies is that the positive correlation be-

tween family income and child health observed in the data may not have a causal interpreta-

tion. The evidence on the positive association cab be explained by the fact that income and

health are determined simultaneously. A natural consequence of simultaneity is the endo-

geneity of family income in the child health equation, leading to the failure of the standard

estimation procedures. By focusing on children, we do not need to worry about this too

much since it is reasonable to assume that child health has little effect on family income
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in most developed countries. This argument, however, does not rule out the possibility that

other family characteristics, whether observable or not, may affect both family income and

child health. If the analysts fail to incorporate these information into their regression mod-

els, endogeneity will emerge as a result of omitted variables. One of the examples of these

“third factors” is parents’ education. While higher education typically leads to higher income,

more educated parents are also able to take care of their children better simply because they

have more health-related knowledge. Fortunately, most household surveys contain education

variables, at least for one of the parents. Therefore, controlling for education is a regular

strategy to mitigate, if not eliminate, the omitted variable bias. Unlike parents’ education,

many other confounding factors are unobservable or not available in a particular survey. In

this circumstance, it requires additional information for identification purpose. If the same

child is observed repeatedly over time, we can control for the unobservable individual hetero-

geneity within a fixed effects framework. However, when family income is suspected to be

correlated with unobservable time-varying factors, we may need some instrumental variables

that are highly correlated with income. In order to address the potential endogeneity, we take

the occupational characteristics (white/blue color jobs) and working hours of both parents as

four separate instruments for family income. It is reasonable to postulate (and we test later)

that these variables have no direct effect on child health after controlling for family income,

yet they are highly correlated with family income.

Our analysis is based on information gathered from the Child Development Supplement

(CDS), which has a panel structure with three waves. CDS, as an important supplement to

the main Panel Study of Income Dynamics (PSID), contains a rich collection of information

on parents and their children aged 0-19. These include, but are not limited to, reliable as-

sessments of the cognitive, behavioral, and health status of a number of children in the family

obtained from a variety of sources. There are 3,563 children surveyed in the first wave (1997).

Among them, only 2,907 and 1,506 remained in the second (2002) and third (2007) waves re-

spectively. To illustrate the methodology of Section 2, a balanced panel is considered, which

only includes those appearing in all three waves. In each wave, the primary caregiver was

asked to report the health information of his/her children. In line with most of the previous

studies, we use primary-caregiver-rated health as the measure of child health. The primary
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caregiver would assess the child health according to the 1 to 5 ordinal scale, with 1 coded as

excellent, 2 = very good, 3 = good, 4 = fair and 5 coded as poor. Most of the children in our

sample are relatively healthy and none of them fall into the worst category (5), as is evident

from Table 1. The family income is obtained from main PSID data, which can be linked with

CDS via the family identifier. Since it is the long-run average income that determines health

investments and health, following the literature, we take logarithm of “permanent” income

as our family income variable (in 2007 constant dollars). Yearly moving averages of annual

income ending in the year prior to the interview over the relevant sample period was used as

the measure of permanent income. The information regarding the instrumental variables is

stored in the main PSID data. The survey also contains a rich set of control variables, such

as gender, race, smoking status of parents, health insurance, and so on. To facilitate the anal-

ysis, we also restrict our attention to a smaller sub-sample, which results from the original

balanced panel by dropping individuals with missing values on any variable we use. The

final sample size is 2,496. Table 1 summarizes several descriptive statistics of our sample,

and they all look reasonable. Condliffe and Link (2008) reported some of the statistics using

PSID data, but using only the 2002 panel. Further details on our 3-wave panel data can be

found in Chatterji et al (2013).

Figure 1 plots the probability of excellent health status against the family income for

four age groups, as predicted by separate univariate probit regressions in the absence of any

control. As family income increases, child health improves rapidly for all age groups, but

the gain slows down considerably after family income reaches around 400,000, showing that

the effect is strongest on the poorest. In addition, we observe substantial heterogeneity in the

steepening of income gradient for different age groups. This is an important issue in health

economics because the steepening of gradient implies as children age, the detrimental effects

of low family income accumulate over time. The gradient seems to be flattening for children

in their teens - this is similar to the evidence presented in Fletcher and Wolf (2014). We are

interested in testing these patterns formally after controlling for a set of other explanatory

variables, unobserved individual heterogeneity and endogeneity of family income.

To implement the two-step procedure of Section 2, extra care is needed when some ex-

ogenous variables are time-invariant, such as gender and race of children. Without further
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Table 1: Descriptive statistics

variables mean std. min. max.
primary-caregiver-rated health
-“excellent” 0.581 0.493 0 1
-“very good” 0.300 0.458 0 1
-“good” 0.099 0.299 0 1
-“fair” 0.019 0.136 0 1
family income 8.539 7.479 0.352 112.007
child’s age 9.212 4.789 0.100 19.010
mother’s age at child birth 28.350 5.632 14.580 44.330
father’s working hours 2106 658.417 0 4853
mother’s working hours 1219 793.068 0 4187
mother’s education 14.270 2.060 6 17
mother’s health (1=excellent or very good) 0.645 0.478 0 1
father’s health (1=excellent or very good) 0.668 0.471 0 1
mother’s occupation (1=white collar) 0.255 0.436 0 1
father’s occupation (1=white collar) 0.248 0.432 0 1
number of children in the family 2.204 0.997 0 9
child’s gender (1=male) 0.538 0.499 0 1
child’s race (1=black) 0.258 0.438 0 1
had food stamp 0.089 0.285 0 1
had food stamp during pregnancy 0.131 0.337 0 1
metropolitan area 0.436 0.496 0 1
smoking in the family unit 0.296 0.457 0 1
housing (1=very clean or somewhat clean) 0.484 0.500 0 1
environment (1=safe) 0.803 0.398 0 1
had health insurance 0.897 0.304 0 1
had chronic condition(s) 0.485 0.500 0 1
birth weight≤5.5lb 0.059 0.235 0 1
N 2,496

Notes: Family income is measured in the unit of 10,000 dollars per year. White collar refers to professional, technical, and kindred
workers, managers and administrators (except farm), as well as sales workers. Metropolitan area is defined as one with 1 million
population or more. The child had chronic condition if a medical professional has ever told the parents that their child has any of the
following diseases: epilepsy, asthma, ear infections, diabetes, anemia, elevated lead in the blood, orthopedic impairment, developmental
problems, allergies, and other health problems. All statistics are based on the balanced panel we use for estimation.
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Figure 1: Probability of excellent health v.s. family income for four age groups
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assumptions, we cannot isolate their partial effects on child health from that via the individ-

ual heterogeneity ci. Nevertheless, they are always included in the regression model as long

as there is no multi-colinearity amongst them.3 As a result, the estimated coefficients of these

variables cannot be interpreted as the partial effects on child health. Instead, they measure the

overall effects that are sum of the effects on Y ∗it and ci. Fortunately, we are not primarily in-

terested in the partial effects of these variables. We concentrate on the partial effect of family

income, which changes over time. To explore the possibility that income gradient may vary

with the age of the child, we supplement the health equation with interaction terms between

log-income and three age group dummies (group 4-8, 8-12, 12+, with group 0-4 being the

baseline). Recall that higher Y ∗it indicates worse health. Thus, we expect that the coefficient

of log-income to be negative.

We first conduct a preliminary regression experiment with results summarized in column

(6) of Table 2. We employ the specification that is extensively adopted, but with a broader set

of covariates, to examine the dynamics of income gradient and compare our estimates with

the existing literature. Specifically, in column (6), we ignore the possible endogeneity of

family income, and regress child health on all explanatory variables by pooled ordered probit

approach, which has been the prevalent specification in previous studies involving panel data.

3Within the correlated random effects framework, we merely control for time averages of those exogenous
variables that vary over time, namely, chronic condition, father’s working hours, mother’s working hours, food
stamp, number of children, health insurance, safe environment, clean house, mother’s health, and father’s health.
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Note that the time average of the exogeneous variables Z̄i in equation (7) are not included,

and thereby the correlation between ci and Zi is also overlooked in this scenario. The result

shows that only the interaction terms between age groups and log-income are significant at

the conventional 5% level. A number of control variables including parents’ education, use

of food stamps, parents’ smoking, living in a metropolital area, child having chronic health

conditions, and race come up significantly with expected signs.

Next, we examine what happens when the regression is augmented by the time average Z̄i

and when log-income is instrumented by parents’ occupational choices and working hours.

In the lower panel of Table 2, we report the joint significance test of X2it in the first stage

regression (4).4 Since this is a linear regression by pooling all observations across individ-

uals and over time, heteroskedasticity and autocorrelation within a cross-sectional unit have

to be tackled for the purpose of drawing valid inference. Following the robust approach in

Wooldridge (2010), we construct the Wald statistic using the heteroskedasticity and autocor-

relation robust asymptotic covariance matrix of the pooled OLS estimator. If the proposed

instruments were uncorrelated with the endogenous covariate, the Wald statistic would fol-

low a chi-squred distribution with L (i.e. dimension of X2it) degrees of freedom. Fortunately,

p-values in the table, almost zero in magnitude, indicate that our instruments are strongly

correlated with the log-income regardless of which covariates are controlled for. The high χ2

statistics rule out any potential concerns related to weak instruments.

Regarding instrument validity, there have been some epidemiological research suggest-

ing that parent’s hours of work and quality of occupations may directly affect child health, cf.

Nicholson et al. (2012). So it is very important to test the assumed exogeneity of our instru-

ments. Case et al. (2002) and Condliffe and Link (2008) used occupational characteristics as

IVs. Certainly, the participation of both parents in paid work improves children’s well-being

because paid employment will generate more family income to afford high quality day and

health care. After all, parental employment is the best protection for children against the

4In the first stage, the dependent variable is the log of family (permanent) income. The covariates include:
race, gender, number of children, whether child has chronic condition, whether child has low birth weight,
whether family is in metropolitan area, whether house is clean, whether environment is safe, whether somebody
smokes in the family, whether child has health insurance, mother’s age at child birth, food stamp recipient,
food stamp during pregnancy, mother’s education, father’s and mother’s working hours, father’s and mother’s
occupational choices (blue/white colar jobs), as well as the time average of those variables that vary over time.
The complete first stage regression results are available upon request.
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Table 2: Results from ordered probit regression

accounting for endogeneity ignoring endogeneity
variables (1) (2) (3) (4) (5) (6)

resid 0.337∗∗∗ 0.336∗∗∗ 0.284∗∗ 0.324∗∗ 0.352∗∗
(0.118) (0.129) (0.132) (0.162) (0.177)

ln(income) -0.612∗∗∗ -0.539∗∗∗ -0.472∗∗∗ -0.461∗∗∗ -0.416∗∗ -0.059
(0.111) (0.123) (0.126) (0.165) (0.201) (0.064)

ln(income)*age4-8 -0.061∗ -0.070∗∗ -0.091∗∗ -0.099∗∗ -0.109∗∗∗ -0.121∗∗∗
(0.036) (0.036) (0.037) (0.039) (0.039) (0.041)

ln(income)*age8-12 -0.073∗ -0.088∗∗ -0.111∗∗∗ -0.116∗∗∗ -0.130∗∗∗ -0.153∗∗∗
(0.038) (0.038) (0.040) (0.043) (0.044) (0.043)

ln(income)*age12+ 0.009 -0.007 -0.034 -0.036 -0.057 -0.079∗∗
(0.036) (0.036) (0.037) (0.040) (0.041) (0.040)

male(=1) 0.047 -0.009 -0.006 -0.004 0.002
(0.061) (0.060) (0.060) (0.060) (0.048)

black(=1) 0.188∗∗ 0.252∗∗ 0.312∗∗∗ 0.250∗∗∗ 0.358∗∗∗
(0.087) (0.088) (0.092) (0.094) (0.060)

chronic 0.202∗∗∗ 0.210∗∗∗ 0.215∗∗∗ 0.504∗∗∗
(0.067) (0.067) (0.068) (0.049)

low birth weight 0.006 0.014 0.005 0.006
(0.137) (0.137) (0.133) (0.101)

no. of children 0.037 0.038 0.029
(0.037) (0.037) (0.025)

metropolitan -0.054 -0.051 -0.116∗∗
(0.073) (0.071) (0.051)

smoking in family 0.129∗ 0.094 0.153∗∗∗
(0.071) (0.068) (0.055)

clean house 0.078 0.076 -0.070
(0.067) (0.069) (0.049)

safe envrn. 0.017 0.018 -0.082
(0.072) (0.074) (0.062)

food stamp at preg 0.053 0.007 0.080
(0.109) (0.106) (0.081)

food stamp -0.231∗ -0.238∗ -0.247∗∗∗
(0.124) (0.128) (0.095)

health insurance -0.031 -0.026 -0.024
(0.094) (0.096) (0.078)

mother’s age at birth 0.007 -0.001
(0.007) (0.005)

mother’s edu 0.007 -0.013
(0.020) (0.014)

mother’s health(good=1) 0.012 -0.268∗∗∗
(0.069) (0.055)

father’s health(good=1) -0.103 -0.105∗
(0.073) (0.055)

η1 -0.494∗∗∗ -0.327∗ 0.139 0.137 0.159 -0.279
(0.159) (0.191) (0.188) (0.263) (0.350) (0.228)

η2 0.516∗∗∗ 0.693∗∗∗ 1.204∗∗∗ 1.214∗∗∗ 1.257∗∗∗ 0.795∗∗∗
(0.160) (0.193) (0.190) (0.263) (0.350) (0.229)

η3 1.437∗∗∗ 1.620∗∗∗ 2.182∗∗∗ 2.204∗∗∗ 2.268∗∗∗ 1.779∗∗∗
(0.173) (0.207) (0.205) (0.277) (0.359) (0.235)

time averages Yes Yes Yes Yes Yes No
1st stage χ2 360.514∗∗∗ 325.766∗∗∗ 320.512∗∗∗ 253.864∗∗∗ 184.497∗∗∗

N 2,496 2,496 2,496 2,496 2,496 2,496

Notes: (η1,η2,η3) are threshold values in equation (8). Standard errors are in parenthesis. Asterisks indicate significance levels:
∗p≤ 0.1, ∗∗ p≤ 0.05, ∗∗∗p≤ 0.01.
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adverse health effects of low income. However, there can be trade-off between family time

for child development and parents’ hours and quality of work. Some have hypothesized that

children whose health is most vulnerable to intergenerationally transmitted disadvantages are

precisely those with low family incomes, longer combined parental work hours and poorer

quality of jobs. Most studies have, however, focused on the effect of mother’s hours and

quality of work on children’s behavioral health and obesity, see Courtemanche et al. (2017).

Hsin and Felfe (2014) found maternal work to have no effect on time in activities that posi-

tively affect children’s healthy development. In a comprehensive meta analysis of 69 studies,

Lucas-Thompson et al. (2010) showed that early maternal employment per se is rarely associ-

ated with children’s later outcomes including health. These diverse considerations prompted

us to test the exogeneity of our instruments.

We use the logic of Sargan test that any set of the instruments, under the null that they are

all truly exogenous, should be absent in equation (8) once the correction term vit is controlled

for. This requires us to use only one instrument to just-identify the model and test if the other

three instruments are significant in (8). Based on the benchmark specification in column (5)

of Table 2, the p-values of four Wald tests,5 each of which has 3 degrees of freedom, are

given by 0.433 (when mother’s working hours is the only instrument for family income),

0.229 (when father’s working hours is the only instrument for family income), 0.221 (when

mother’s occupational choice is the only instrument for family income), and 0.598 (when

father’s occupational choice is the only instrument for family income), providing strong evi-

dence in support of the exogeneity of our instruments. These results are consistent with the

secular rise in women’s overall workforce participation and other factors have also played a

role in enabling more women to stay in the labor force after pregnancy. Norms and infras-

tructure with respect to how families approach work and child rearing have shifted such that

women no longer drop out of the labor force upon becoming a mother, see Dave and Young

(2019). The 1980’s witnessed the emergence of flexible work schedules, and employment

based child care benefits, making it easier for women with children to continue to work. In

contemporary American society, the presumed trade-off between maternal work and quality

5To accommodate arbitrary heteroskedasticity and autocorrelation, we use the asymptotic covariance matrix
of the second stage estimator in the appendix to construct the Wald statistics.
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child care is possibly no longer exist, supporting our exogeneity test results. 6

The second stage pooled ordered probit results are summarized in columns (1)-(5) of Ta-

ble 2, which are produced by successively adding more covariates in the health equation. The

log income and its interactions with age groups (except age 12+) are highly significant across

all specifications. However, the impact of family income on child health deteriorates from

−0.612 to −0.416 as more variables are added, indicating the existance of multiple trans-

mission channels that translate income into better health. With these channels being fixed,

income effect is mediated to some extent, as expected. As column (5) shows, the income (in

addition to its age group interactions) still remains highly significant and is much larger than

that in column (6), even with all controls in place. We also report the standard errors obtained

by adjusting for the estimation uncertainty in computing residuals vit in columns (1)-(5), as

detailed in the appendix. Not surprisingly, we find that taking care of the extra uncertainty

due to the use of the generated regressor makes most of the coefficients less precise in column

(5).

It is clear from equation (5) that after controlling for the correlated individual effects, the

only source of endogeneity stems from non-zero parameter ρ. As shown in the first row of

Table 2, the significant coefficients of residual (resid) in columns (1) - (5) imply that fam-

ily income is indeed endogenous. The positive coefficient for resid implies that unobserved

variables (neighborhood quality, for example) inadvertently excluded from the specification

affect both family income and child health positively. Hence, the estimation results, by over-

looking endogeneity, would have been misleading. In particular, by comparing columns (5)

and (6), we find the income coefficient to be statistically significant, and larger in size when

the endogeneity issue is properly dealt with. This agrees with the evidence provided by

Kuehnle (2014) using a probit model on British data that after correcting for endogeneity,

the income gradient in child health rises considerably. A similar result was also found by

6Alternatively, one can use any set of three instruments to over-identify the model and check if the last one
is present in (8) via the robust t test. The p-values are given by 0.204 (for mother’s working hours), 0.746 (for
father’s working hours), 0.950 (for mother’s occupational choice), and 0.125 (for father’s occupational choice).
Exogeneity is overwhelmingly confirmed once again. Following the extant literature, we also tried few distal
variables like years of education and smoking status of grandparents as additional instruments, cf. Doyle et
al. (2007). But in our analysis, these variables did not pass the instrument validity test. Kuehule (2104) and
Wei and Fenny (2019) have used local area unemployment rates in this context. We used state unemployment
rates as IV, but this variable had very little correlation with family income, and was subsequently dropped. The
county-level labor market variables will possibly work well in this context.
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Papke and Wooldrige (2008) on the effect of local area income on test scores of schools in

their fractional response model using control function. The qualitative patterns of income

gradient are not affected much by endogeneity. Increasing gradient is more likely to occur

during early childhood. Initially, family income becomes more and more vital for health as

child grows up and the income effect peaks for group 8-12. After age 12, the size of the

gradient starts to decline. This finding is in line with Figure 1 and Fletcher and Wolf (2014)

as well. After controlling for endogeneity in column (5), compared to the specification in col-

umn (6) without allowing for endogeneity, parents health, smoking in family, and living in an

metropolitan area lost their statistical significance. However, black, chronic health, and food

stamp continued to be statistically significant even after allowing for endogeneity of family

income. It appears the effect of the remaining variables, most notably that of parents’ health

and education have been absorbed in the income variable, in addition to their effects via the

individual heterogeneity. The list of all such variables that were included in our estimates in

columns (1) through (5) in table 2 are reported in footnote 4. Among these, time averages of

chronic conditions, clean house, mother’s health, and father’s working hours were significant

in column (5) at the 5% level. Thus, we successfully identified the effect of mother’s health

in the presence of a significant income coefficient. As Kuehnle (2014) has pointed out, there

have been problems in delineating its separate effect in the presence of family income. We

also note that the strong income gradient withstands some “third facotr” explanations in terms

of parental education and health, low birth weight, etc.

To quantify the difference between columns (5) and (6), we cannot directly compare the

point estimates in Table 2. Karaca-Mandic et al. (2012) argued that the estimated coefficients

in nonlinear econometric models can change dramatically due to the normalization of the

error variance induced by an omitted seemingly irrelevant heterogeneity. In contrast, the

marginal effect is relatively stable. Inspired by this insight, we compare the marginal effect

of family income on child health. Specifically, we consider the effect on the probability that

the child is in excellent health. Our framework can also be used to evaluate the marginal

effects at other points of the health distribution, cf. Davillas et al. (2019). To see how income

gradient evolves dynamically, we consider the marginal effects of family income across age

groups. In general, the marginal effects in a nonlinear econometric model depend on the
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values of all variables. To obtain a single summary, we calculate the average marginal effect

of family income. For group 0-4, the income gradient is calculated as

− 1
NT

N

∑
i=1

T

∑
t=1

φ(m0−4
it )

β̂0−4

incomeit
,

where m0−4
it is defined as

η̂1− ln(income)it β̂0−4−X1it β̂− Z̄iθ̂− vit ρ̂,

β̂0−4 is the estimated coefficient of log-income, and X1it denotes all exogenous explanatory

variables. For group 4-8, the income gradient is

− 1
NT

N

∑
i=1

T

∑
t=1

φ(m4−8
it )

β̂0−4 + β̂4−8

incomeit
,

where m4−8
it is defined as

η̂1− ln(income)it(β̂0−4 + β̂4−8)−X1it β̂− Z̄iθ̂− vit ρ̂.

Here, β̂4−8 is the estimated coefficient of the interaction term between log-income and group

4-8. The average gradient for other groups can be derived analogously. The estimated age-

gradient profiles are summarized in Table 3, and the 95% confidence intervals are constructed

by cluster bootstrap (resampling across cross-sectional units). We find that ignoring endo-

geneity underestimates the impact of family income on the probability of reporting excellent

health by 2.2− 2.5 percentage points. For example, when the income level is raised by

$10,000 per year, the primary caregiver is, on average, 2.9% more likely to rate the health

of his/her child as excellent according to column ‘0-4’ in Table 3. The gradient is only 0.4%

when endogeneity is ignored. Taken together, in our empirical illustration, correcting for

endogeneity makes a big difference on the effect of family income on child health. The es-

timates suggest a positive and increasing gradient till about age 12, but a flat gradient in the

teens. Also, given that most of the transmission variables like parents’ education are time

invariant in the sample, the varying income gradient as children age produces a convincing
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evidence that family income casually affects child health, cf. Fletcher and Wolf (2014).

Table 3: The average derivatives of probability of excellent health for four age groups

age group 0-4 4-8 8-12 12+
ignoring endogeneity

average derivative 0.004 0.012 0.014 0.010
(-0.005,0.013) (0.004,0.021) (0.006,0.023) (0.002,0.017)

accounting for endogeneity
average derivative 0.029 0.036 0.037 0.032

(0.001,0.056) (0.009,0.062) (0.011,0.063) (0.006,0.059)

Notes: The 95% confidence intervals are constructed by cluster bootstrap (resampling across cross-sectional units) with 20,000 bootstrap
repititions.

4 Conclusion

We propose a control function approach to estimating ordered response panel data models

in the presence of endogeneity. Like Papke and Wooldridge (2008), our procedure is com-

putationally attractive in that all regressions involved are quite standard. In addition, the

asymptotic distribution of this two-step estimator is derived although the statistical inference

can also be carried out by boostrap. This approach is illustrated by reexamining the income

gradient in child health using the data from the Panel Study of Income Dynamics. The em-

pirical finding implies that correcting for endogeneity would lead investigators to draw a

different conclusion as to the impact of family income on child health and its dynamics as

children grow up. The effects are significantly underestimated without correcting for en-

dogeneity. One caveat of our analysis is that if the vulnerable mothers in terms of health,

education, family income, etc. are less aware of their children’s true health status, and report

accordingly, the estimated income gradient will even be steeper that we find after correcting

for endogeneity. Using German Socio-Economic Panel data, Sandner and Jungmnann (2016)

found that the concordance between maternal ratings and children’s true health decreases in

mothers with multiple risk burdens.
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Compared with the joint maximum likelihood approach, our method relaxes the distri-

butional assumption on the error term of the reduced-form equation, and thereby reduces

the risk of misspecification. However, it does require the conditional independence between

structural error and exogenous variables, which means that discrete endogenous regressors

are ruled out in our framework. How to extend the current procedure to handle discrete

endogenous regressors without imposing strong restrictions is still an open question. in ad-

dition, as discussed in section 3, the structural parameters associated with time-invariant ex-

planatory variables cannot be identified in the correlated random effects framework. This is

not an issue in our empirical example since the primary interest is centered on the partial

effect of family income, which is time-varying. There may be situations where we are inter-

ested in the effects of time-invariant observables, which may or may not be endogenous in the

structural equation. The approaches proposed by Hausman and Taylor (1981) and Chatterji

et al. (2014) might be possible alternatives to pursue after recognizing the ordered nature of

the dependent variable. We leave these unresolved issues as topics for further research.
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Mathematical Appendix

In this appendix, we attempt to show the two-step estimator α̂ defined as the maximizer of

lN(α) over a compact parameter space Θ is consistent and asymptotically normally distributed

even if vit in lN(α) is replaced by the first step residual v̂it . Throughout this section, we

assume that the second moments of all random variables are finite so that the quantities being

studied are well-defined. Decompose α into two sub-vectors: α1 ≡ (β′1,β2,θ
′,ρ,η′)′ and

α2 ≡ (γ′,λ′)′. Hence, α1 contains parameters estimated at the second stage, whereas those

estimated at the first stage are included in α2. Given α2 and the normalization σr = 1, the

partial derivative of li(α1,α2) with respect to α1 is

∂li(α1,α2)

∂β1
=

T

∑
t=1

J

∑
j=1

I(Yit = j)
(φ(h j−1

it )−φ(h j
it))X

′
1it

Φ(h j
it)−Φ(h j−1

it )
,

∂li(α1,α2)

∂β2
=

T

∑
t=1

J

∑
j=1

I(Yit = j)
(φ(h j−1

it )−φ(h j
it))Y2it

Φ(h j
it)−Φ(h j−1

it )
,

∂li(α1,α2)

∂θ
=

T

∑
t=1

J

∑
j=1

I(Yit = j)
(φ(h j−1

it )−φ(h j
it))Z̄

′
i

Φ(h j
it)−Φ(h j−1

it )
,

∂li(α1,α2)

∂ρ
=

T

∑
t=1

J

∑
j=1

I(Yit = j)
(φ(h j−1

it )−φ(h j
it))vit

Φ(h j
it)−Φ(h j−1

it )
,

∂li(α1,α2)

∂η j
=

T

∑
t=1

I(Yit = j)
φ(h j

it)

Φ(h j
it)−Φ(h j−1

it )
− I(Yit = j+1)

φ(h j
it)

Φ(h j+1
it )−Φ(h j

it)
, (11)

where h j
it ≡ η j−X1itβ1−Y2itβ2− Z̄iθ− vitρ, and vit ≡ Y2it−Zitγ− Z̄iλ.

Suppose we obtain v̂it by pooled OLS, which minimizes the sum of pooled squared er-

rors ∑
N
i=1 ∑

T
t=1(Y2it −Zitγ− Z̄iλ)

2. Let ssei(α2) ≡ ∑
T
t=1(Y2it −Zitγ− Z̄iλ)

2. The derivative of

ssei(α2) with respect to α2 is

∂ssei(α2)

∂γ
= −2

T

∑
t=1

(Y2it−Zitγ− Z̄iλ)Z′it ,

∂ssei(α2)

∂λ
= −2

T

∑
t=1

(Y2it−Zitγ− Z̄iλ)Z̄′i . (12)
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Define gi(α1,α2) to be (∂li(α1,α2)
′/∂α1,∂ssei(α2)

′/∂α2)
′. Assume there exists a true value

α∗ ∈Θ. We proceed by showing E(gi(α
∗
1,α
∗
2)) = 0.

If Zi is strictly exogenous in (4), α∗2 ≡ (γ∗
′
,λ∗

′
)′ satisfies

E((Y2it−Zitγ
∗− Z̄iλ

∗)(Zit , Z̄i)
′) = 0 (13)

for each t. Therefore, E(∂ssei(α
∗
2)/∂α2) = 0. For ∂li(α1,α2)/∂α1, we only consider

∂li(α1,α2)/∂β2, which is a scalar.

E(
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it )
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=
T
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it )
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=
T

∑
t=1

J

∑
j=1
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J
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), (14)

where h∗ j
it ≡ η∗j −X1itβ

∗
1−Y2itβ

∗
2− Z̄iθ

∗− v∗itρ
∗, and v∗it ≡ Y2it − Zitγ

∗− Z̄iλ
∗. The second

equality of (14) is due to the law of iterated expectations, and the last equality is true since

α∗1 ≡ (β∗
′

1 ,β
∗
2,θ
∗′,ρ∗,η∗

′
)′ is the true parameters. Evaluated at (α∗1,α

∗
2), (14) reduces to

E(
∂li(α∗1,α

∗
2)

∂β2
) =

T

∑
t=1

J

∑
j=1

E((φ(h∗ j−1
it )−φ(h∗ j

it ))Y2it). (15)

For each t, let the marginal distribution of (Zi,Y2it) is f ∗t (Zi,Y2it) if it exists. The joint

distribution of (Yit ,Zi,Y2it) is the product of f ∗t (Zi,Y2it) and the conditional distribution of Yit

given (Zi,Y2it), i.e.

p∗t (Yit ,Zi,Y2it)≡ f ∗t (Zi,Y2it)
J

∏
j=1

(Φ(h∗ j
it )−Φ(h∗ j−1

it ))I(Yit= j). (16)

For any other α ∈ Θ, we can define pt(Yit ,Zi,Y2it) similarly by replacing α∗ in (16) with α.

It is easy to verify that pt(Yit ,Zi,Y2it) is also a valid distribution. Define the Kullback-Leibler
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information criterion (KLIC) as

ψt(p∗t , pt)≡ E(log(
p∗t (Yit ,Zi,Y2it)

pt(Yit ,Zi,Y2it)
)), (17)

where E(·) is the expectational operator with respect to the joint distribution of (Yit ,Zi,Y2it).

An important result about KLIC is that ψt(p∗t , pt)≥ 0 if p∗t (Yit ,Zi,Y2it) is the true distribution.

In other words, E(log(p∗t (Yit ,Zi,Y2it)))≥ E(log(pt(Yit ,Zi,Y2it))). As a result, α∗ maximizes

E(log(pt(Yit ,Zi,Y2it))) over Θ. Since

E(log(pt(Yit ,Zi,Y2it))) = E(log( f ∗t (Zi,Y2it)))+E(
J

∑
j=1

I(Yit = j)log(Φ(h j
it)−Φ(h j−1

it ))),(18)

α∗ also maximizes E(∑J
j=1 I(Yit = j)log(Φ(h j

it)−Φ(h j−1
it ))). By the law of iterated expecta-

tions,

E(
J

∑
j=1

I(Yit = j)log(Φ(h j
it)−Φ(h j−1

it ))) =
J

∑
j=1

E((Φ(h∗ j
it )−Φ(h∗ j−1

it ))log(Φ(h j
it)−Φ(h j−1

it ))).

A necessary condition for the maximization implies that

J

∑
j=1

∂E((Φ(h∗ j
it )−Φ(h∗ j−1

it ))log(Φ(h∗ j
it )−Φ(h∗ j−1

it )))

∂α
= 0 (19)

if α∗ lies in the interior of Θ.

To justify the interchange of expectation and derivative in (19), we use the Generalized

Mean-Value Theorem, which is stated in Glasserman (1991). Again, we only consider the

derivative with respect to β2. Without loss of generality, (Φ(h∗ j
it )−Φ(h∗ j−1

it )) can be ignored

since it is bounded between 0 and 1 and is independent of α. Look at the univariate real-

valued function d∗it(β2), defined as

log(Φ(η∗j −X1itβ
∗
1−Y2itβ2− Z̄iθ

∗− v∗itρ
∗)−Φ(η∗j−1−X1itβ

∗
1−Y2itβ2− Z̄iθ

∗− v∗itρ
∗)). (20)

(20) is differentiable for any β2 ∈ R. In particular, (20) is differentiable on a bounded closed

interval [a,b], where a ≤ infα∈Θ β2 and b ≥ supα∈Θ β2. By the Generalized Mean-Value
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Theorem, we have

|
d∗it(β

∗
2 +h)−d∗it(β

∗
2)

h
| ≤ sup

β2∈[a,b]
|dd∗it(β2)

dβ2
|, (21)

where β∗2 + h ∈ [a,b]. E(supβ2∈[a,b] |dd∗it(β2)/dβ2|) is shown to be finite by the argument in

(33). It then follows from dominated convergence that

∂E((Φ(h∗ j
it )−Φ(h∗ j−1

it ))log(Φ(h∗ j
it )−Φ(h∗ j−1

it )))

∂β2

= lim
h→0

E(
(Φ(h∗ j

it )−Φ(h∗ j−1
it ))(d∗it(β

∗
2 +h)−d∗it(β

∗
2))

h
)

= E((Φ(h∗ j
it )−Φ(h∗ j−1

it )) lim
h→0

d∗it(β
∗
2 +h)−d∗it(β

∗
2)

h
)

= E((Φ(h∗ j
it )−Φ(h∗ j−1

it ))
dd∗it(β

∗
2)

dβ2
)

= E((Φ(h∗ j
it )−Φ(h∗ j−1

it ))
∂log(Φ(h∗ j

it )−Φ(h∗ j−1
it ))

∂β2
). (22)

The second equality in (22) is true because

E((Φ(h∗ j
it )−Φ(h∗ j−1

it )) sup
β2∈[a,b]

|dd∗it(β2)

dβ2
|)≤ E( sup

β2∈[a,b]
|dd∗it(β2)

dβ2
|)< ∞. (23)

Since (22) holds for any j, we obtain the moment condition

J

∑
j=1

E((φ(h∗ j−1
it )−φ(h∗ j

it ))Y2it) = 0. (24)

Taking summation of (24) over t, we have the desired result E(∂li(α∗1,α
∗
2)/∂β2) = 0. To

summarize, E(gi(α
∗
1,α
∗
2)) = 0.

Now, we show (α∗1,α
∗
2) is uniquely determined and thus is identified. To identify α∗2, the

following two conditions are sufficient:

E(vit |Zi) = 0 and rank E([IT , jT ( j′T jT )−1 j′T ]Zi) = 2M, (25)

where IT is T -dimensional identity matrix, and jT is T ×1 vector of ones. (25) implies Zi is
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strictly exogenous in (4) and the columns of [IT , jT ( j′T jT )−1 j′T ]Zi must be linearly indepen-

dent. Importantly, this rules out time-invariant elements in Zi.

Identification of α∗1 requires more effort. Under conditions in (25), α∗2 is identified and

thus can be taken to be known. Since P(Yit = j|Zi,Y2it) is specified as Φ(h∗ j
it )−Φ(h∗ j−1

it ),

it is necessary to verify that there is no other α1, coupled with α∗2, in Θ such that P(Yit =

j|Zi,Y2it)=Φ(h̃ j
it)−Φ(h̃ j−1

it ). Here h̃ j
it is defined as h j

it with vit replaced by v∗it . Consider j = 1

first. P(Yit = 1|Zi,Y2it) = Φ(h∗1it ). Suppose there exists another α1 such that Φ(h∗1it ) = Φ(h̃1
it)

almost surely and at least one element of α1 differs from the corresponding element of α∗1.

We must have

η
∗
1−η1 = X1it(β

∗
1−β1)+Y2it(β

∗
2−β2)+ Z̄i(θ

∗−θ)+ v∗it(ρ
∗−ρ) (26)

almost surely. Because the left hand side of (26) is a constant, the variance of right hand

side must be zero, i.e. ((β∗1−β1)
′,β∗2−β2,(θ

∗−θ)′,ρ∗−ρ)VarQit((β
∗
1−β1)

′,β∗2−β2,(θ
∗−

θ)′,ρ∗−ρ)′= 0, where Qit ≡ (X1it ,Y2it , Z̄i,v∗it). If VarQit is nonsingular, then ((β∗1−β1)
′,β∗2−

β2,(θ
∗−θ)′,ρ∗−ρ) = 0, which implies η∗1 = η1 by (26).

For j = 2, P(Yit = 2|Zi,Y2it) = Φ(h∗2it )−Φ(h∗1it ). By the preceding argument, Φ(h∗1it ) =

Φ(h̃1
it) and both α∗ and α share the same coefficients of Qit . Hence,

η
∗
2−η2 = X1it(β

∗
1−β1)+Y2it(β

∗
2−β2)+ Z̄i(θ

∗−θ)+ v∗it(ρ
∗−ρ) = 0. (27)

Iterating the process until j = J, we have α = α∗. To put it differently, α∗ is the unique

vector in Θ such that P(Yit = j|Zi,Y2it) = Φ(h∗ j
it )−Φ(h∗ j−1

it ) for any j. The key restriction

for identification of α1 is the nonsingularity of VarQit , which is true if and only if there is no

linear relationship between the variables in Qit . In particular, we require X2it and X̄2i in (4) to

be partially correlated with Y2it once X1it and X̄1i are controlled for. To summarize, conditions

in (25) and nonsingularity of VarQit for each t are sufficient for identification of α∗ in the

system.

However, identification is not sufficient for uniqueness of α∗1 as the solution to

E(∂li(α1,α
∗
2)/∂α1) = 0. Nevertheless, Lemma 2.2 in Newey and McFadden (1994) es-

tablishes the equivalence of identification and uniqueness of α∗1 as the maximizer of
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E(li(α1,α
∗
2)). Pratt (1981) proved that li(α1,α

∗
2), as a function of α1, is strictly concave.

For τ ∈ (0,1), let α1
1 and α2

1 be two distinct vectors lying in a convex set containing Θ. It

follows from the definition of strict concavity that

li(τα
1
1 +(1− τ)α2

1,α
∗
2)− τli(α1

1,α
∗
2)− (1− τ)li(α2

1,α
∗
2)> 0. (28)

Problem 19 of Section 18.2 in Royden and Fitzpatrick (2010) implies

E(li(τα
1
1 +(1− τ)α2

1,α
∗
2)− τli(α1

1,α
∗
2)− (1− τ)li(α2

1,α
∗
2))> 0. (29)

This demonstrates that E(li(α1,α
∗
2)) is strictly concave in α1, so α∗1 uniquely solves

E(∂li(α1,α
∗
2)/∂α1) = 0. Or, we can interpret α∗ as the unique solution to

min
α∈Θ

E ′(gi(α1,α2))IRE(gi(α1,α2)), (30)

where IR is the identity matrix of dimension R ≡ K1 + 3M + J + 1. Since the number of

parameters in α is equal to the number of moment restrictions, selection of weighting matrix

does not matter. We choose IR as the weighting matrix for simplicity. α̂ solves the sample

counterpart of (30)

min
α∈Θ

(
N

∑
i=1

gi(α1,α2))
′IR(

N

∑
i=1

gi(α1,α2)). (31)

Since IR is positive definite, (31) is equivalent to solving for the root of the equation

∑
N
i=1 gi(α1,α2) = 0, which is approximately the two-step estimator α̂ in large samples. Sup-

pose {(Zi,Yi,Y2i) : i = 1,2, ...} is independently and identically distributed. It is straightfor-

ward to check that conditions of Theorem 2.6 in Newey and McFadden (1994), except the

uniform integrability of gi(α1,α2), are satisfied. We are going to argue that the uniform

integrability also holds.

As before, we only consider ∂li(α1,α2)/∂β2 in (11). For any j in {2, ...,J−1}, Φ(h j
it)−

Φ(h j−1
it ) =

∫ h j
it

h j−1
it

φ(x)dx and h j
it − h j−1

it = η j−η j−1 > 0. If a lower value of
∫ h j

it

h j−1
it

φ(x)dx is

desirable, we hope η j−η j−1 could be as small as possible. Given the compactness of Θ,
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there exist two values ηo
j and ηo

j−1 in Θ with ηo
j > ηo

j−1 such that ηo
j −ηo

j−1 is the smallest.

Similarly, we can find the maximum of |β1|, |β2|, |θ|, |ρ|, |γ| and |λ| over Θ, denoted by βo
1,

βo
2, θo, ρo, γo and λo, respectively.7

Let h jo
it ≡ |ηo

j + ηo
j−1|/2+ (ηo

j − ηo
j−1)/2+ |X1it |βo

1 + |Y2it |βo
2 + |Z̄i|θo + vo

itρ
o, h j−1o

it ≡

|ηo
j +ηo

j−1|/2− (ηo
j−ηo

j−1)/2+ |X1it |βo
1+ |Y2it |βo

2+ |Z̄i|θo+vo
itρ

o, and vo
it ≡ |Y2it |+ |Zit |γo+

|Z̄i|λo. Since h jo
it −h j−1o

it = h j
it −η j +ηo

j − (h j−1
it −η j−1 +ηo

j−1) = ηo
j −ηo

j−1, and |h j−1o
it +

(ηo
j −ηo

j−1)/2| ≥ |h j−1
it −η j−1 +ηo

j−1 +(ηo
j −ηo

j−1)/2|, it then follows from the symmetry

of φ(·) around 0 that

Φ(h jo
it )−Φ(h j−1o

it )≤Φ(h j
it−η

j +η
o
j)−Φ(h j−1

it −η
j−1 +η

o
j−1). (32)

Moreover, Φ(h j
it−η j +ηo

j)−Φ(h j−1
it −η j−1+ηo

j−1)≤Φ(h j
it)−Φ(h j−1

it ) because ηo
j−ηo

j−1

achieves the minimum. As a result, 0<Φ(h jo
it )−Φ(h j−1o

it )≤Φ(h j
it)−Φ(h j−1

it ) for any α∈Θ.

If E(1/(Φ(h jo
it )−Φ(h j−1o

it ))2)< ∞, then

E(|
(φ(h j−1

it )−φ(h j
it))Y2it

Φ(h j
it)−Φ(h j−1

it )
|) = E(

|φ(h j−1
it )−φ(h j

it)||Y2it |
Φ(h j

it)−Φ(h j−1
it )

)

≤ 1√
2π

E(
|Y2it |

Φ(h j
it)−Φ(h j−1

it )
)

≤ 1√
2π

E(
|Y2it |

Φ(h jo
it )−Φ(h j−1o

it )
)

≤ 1√
2π

E1/2(
1

(Φ(h jo
it )−Φ(h j−1o

it ))2
)E1/2(Y 2

2it), (33)

where the first inequality is true because 0 < φ(x)≤ 1/
√

2π for any x ∈ R, and the third one

is Cauchy-Schwarz inequality. Since E(Y 2
2it) < ∞, the uniform integrability of (φ(h j−1

it )−

φ(h j
it))Y2it/(Φ(h j

it)−Φ(h j−1
it ) follows.

To ensure E(1/(Φ(h jo
it )−Φ(h j−1o

it ))2) < ∞, the finite second moment assumption we

have made is not enough. Note that Φ(h jo
it )−Φ(h j−1o

it ) = φ(m̃ j
it)(η

o
j −ηo

j−1), where m̃ j
it is a

7|β1| is the vector generated by taking absolute value of each element in β1.
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mean value between h jo
it and h j−1o

it . We have

E(1/(Φ(h jo
it )−Φ(h j−1o

it ))2) =
1

(ηo
j −ηo

j−1)
2 E(

1

φ2(m̃ j
it)
)

=
2π

(ηo
j −ηo

j−1)
2 E(exp(m̃ j2

it ))

≤ 2π

(ηo
j −ηo

j−1)
2 E(exp(|h j−1o

it |+η
o
j −η

o
j−1)

2). (34)

A sufficient condition for the finiteness of (34) is that the squared random variables are ex-

ponentially integrable, i.e. E(exp(Y2it)
2) < ∞. This is much stronger than existence of the

second moment because the latter is implied by the former by Jensen’s inequality.

When j = 1, Φ(h j
it)−Φ(h j−1

it ) = Φ(h1
it). We can verify the uniform integrability of

−φ(h1
it)Y2it/Φ(h1

it) as before. The same reasoning applies when j = J. Finally, the uniform

integrability of ∂li(α1,α2)/∂β2 follows since each element in the sum is uniformly integrable.

Let us look at ∂ssei(α2)/∂γ. By (12),

|∂ssei(α2)

∂γ1
| = 2|

T

∑
t=1

(Y2it−Zitγ− Z̄iλ)Z1it |

≤ 2
T

∑
t=1
|(Y2it−Zitγ− Z̄iλ)Z1it |

≤ 2
T

∑
t=1

(|Y2it |+ |Zit ||γ|+ |Z̄i||λ|)|Z1it |

≤ 2
T

∑
t=1

(|Y2it |+ |Zit |γo + |Z̄i|λo)|Z1it |, (35)

where γ1 is the first element of γ, and Z1it is the first element of Zit . ∂ssei(α2)/∂γ is uni-

formly integrable by the finiteness of the second moments. Given the uniform integrability of

gi(α1,α2), consistency of α̂ is established by Theorem 2.6 in Newey and McFadden (1994).

To show asymptotic normality, we use Theorem 3.4 in Newey and McFadden (1994).

Again, all regularity conditions hold for the current case,8 and it follows that

√
N(α̂−α

∗)
d→ N(0,V ), (36)

8The uniform boundedness is verified following the same way that we derived consistency. The details are
available upon request.

30



where

V ≡ E−1(
∂gi(α

∗
1,α
∗
2)

∂α
)E(gi(α

∗
1,α
∗
2)gi(α

∗
1,α
∗
2)
′)E−1(

∂gi(α
∗
1,α
∗
2)

∂α
)′. (37)

If we partition gi(α
∗
1,α
∗
2) into two sub-vectors (∂li(α∗1,α

∗
2)
′/∂α1,∂ssei(α

∗
2)
′/∂α2)

′,

E(∂gi(α
∗
1,α
∗
2)/∂α) can be written as

 E(∂2li(α∗1,α
∗
2)

∂α1∂α′1
) E(∂2li(α∗1,α

∗
2)

∂α1∂α′2
)

0 E(∂2ssei(α
∗
2)

∂α2∂α′2
)

 . (38)

The inverse of E(∂gi(α
∗
1,α
∗
2)/∂α) is thus

 E−1(
∂2li(α∗1,α

∗
2)

∂α1∂α′1
) −E−1(

∂2li(α∗1,α
∗
2)

∂α1∂α′1
)E(∂2li(α∗1,α

∗
2)

∂α1∂α′2
)E−1(

∂2ssei(α
∗
2)

∂α2∂α′2
)

0 E−1(
∂2ssei(α

∗
2)

∂α2∂α′2
).

 . (39)

Likewise,

E(gi(α
∗
1,α
∗
2)gi(α

∗
1,α
∗
2)
′) =

 E(∂li(α∗1,α
∗
2)

∂α1

∂li(α∗1,α
∗
2)

∂α1

′
) E(∂li(α∗1,α

∗
2)

∂α1

∂ssei(α
∗
2)

∂α2

′
)

E(∂ssei(α
∗
2)

∂α2

∂li(α∗1,α
∗
2)

∂α1

′
) E(∂ssei(α

∗
2)

∂α2

∂ssei(α
∗
2)

∂α2

′
).

 . (40)

Plugging (39) and (40) into (37), we get the asymptotic variance of
√

N(α̂1−α∗1)

V1 ≡ E−1(
∂2li(α∗1,α

∗
2)

∂α1∂α′1
)ME−1(

∂2li(α∗1,α
∗
2)

∂α1∂α′1
), (41)
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where

M ≡ E(
∂li(α∗1,α

∗
2)

∂α1

∂li(α∗1,α
∗
2)

∂α1

′
)

−E(
∂li(α∗1,α

∗
2)

∂α1

∂ssei(α
∗
2)

∂α2

′
)E−1(

∂2ssei(α
∗
2)

∂α2∂α′2
)E(

∂2li(α∗1,α
∗
2)
′

∂α1∂α′2
)

−E(
∂2li(α∗1,α

∗
2)

∂α1∂α′2
)E−1(

∂2ssei(α
∗
2)

∂α2∂α′2
)E(

∂ssei(α
∗
2)

∂α2

∂li(α∗1,α
∗
2)

∂α1

′
)

+E(
∂2li(α∗1,α

∗
2)

∂α1∂α′2
)E−1(

∂2ssei(α
∗
2)

∂α2∂α′2
)E(

∂ssei(α
∗
2)

∂α2

∂ssei(α
∗
2)

∂α2

′
)

E−1(
∂2ssei(α

∗
2)

∂α2∂α′2
)E(

∂2li(α∗1,α
∗
2)
′

∂α1∂α′2
). (42)

If all terms except the first one are ignored, V1 becomes

E−1(
∂2li(α∗1,α

∗
2)

∂α1∂α′1
)E(

∂li(α∗1,α
∗
2)

∂α1

∂li(α∗1,α
∗
2)

∂α1

′
)E−1(

∂2li(α∗1,α
∗
2)

∂α1∂α′1
), (43)

which is the usual robust asymptotic variance of the maximum likelihood estimator α̂1 at

the second stage. However, (43) is generally incorrect because it ignores the uncertainty of

estimating v̂it . As argued by Newey and McFadden (1994), there are important special cases

where (41) and (43) are equivalent. For example, if E(∂2li(α∗1,α
∗
2)/∂α1∂α′2)= 0, (41) reduces

to (43). Unfortunately, this is not the case for the ordered probit model. By (11), it is easy to

see that E(∂2li(α∗1,α
∗
2)/∂α1∂α′2) is generally not zero, and the estimation uncertainty at the

first stage must be taken into account. One important exception occurs when ρ∗ = 0. This is

true if and only if Cov(rit ,vit) = 0, i.e. rit and vit are independent of each other by (5). As

a consequence, Y2it is exogenous and the usual maximum likelihood estimator of α∗1 is well-

behaved. This implies that we can carry out the two-step procedure to get α̂1 as before and use

the standard t statistic to test the significance of ρ̂. Specifically, we use the square root of the

diagonal term in (43) corresponding to ρ as the denominator of the t statistic. Note that (43) is

the variance matrix of sandwich form, which is robust to possible dynamic misspecification

in partially specified panel data model. In this setting, the information equality, which states

that E−1(−∂2li(α∗1,α
∗
2)/∂α1∂α′1) = E(∂li(α∗1,α

∗
2)/∂α1∂li(α∗1,α

∗
2)
′/∂α1), fails to hold, and

(43) should be used instead of the simplified version E(∂li(α∗1,α
∗
2)/∂α1∂li(α∗1,α

∗
2)
′/∂α1) that
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is reported regularly in most statistical packages.

All unknown components in (41) can be estimated by their sample counterparts with the

two-step estimator α̂ in place of α∗. For instance, E(∂2li(α∗1,α
∗
2)/∂α1∂α′2) is estimated by

(∑N
i=1 ∂2li(α̂1, α̂2)/∂α1∂α′2)/N. The consistency of these variance matrix estimators follows

from Lemma 4.3 in Newey and McFadden (1994). Another convenient way to derive the ap-

proximate variance matrix is thought bootstrapping. Although there is no formal justification

in the current case, we expect that the bootstrap is asymptotically valid given the smoothness

of the objective function. Note that a bootstrap sample is generated by random sampling in

the cross section dimension, i.e. drawing all time periods for a particular unit, if N, relative

to T , is large enough.
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